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the equations 
ai + C+a? + a3u3 = 0, b, + a,b, - a3b3 = 0 (13) 

which by virtue of (11) are identically equal to each other. Discarding the second equa- 
tion we conclude that an CI~ > 0 and an ag > 0 satisfying (13) can always be found 
provided that a change of sign occurs in the sequence ai, a2? o3 . 

If aI, 0.2, a3 all have the same sign, then setting x = 0 in (7) and employing the Che- 

taev theorem we find, that the trivial solution is unstable in the kth approximation which 
proves the necessity of the above conditions. 

The author thanks V. V. Rumiantsev for assessing this paper. 
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A sufficient indication of the stability of the form of equilibrium is given for an elastic 
axisymmetric shell, assuming that initial perturbations are axisymmetric. It is also 
assumed that the energy stored in an element of the shell, is determined only by the 

*) A. M. Slobodkin, Candidate of Physics and Mathematics, Senior Scientific Worker in 
the VTs Akad. Nauk SSSR, submitted this paper to the Editor on the 24th November 1969. 

When critically reviewing the paper,it was found that logical rounding up of this study 

would be completed if condition (1.1) was expressed directly in terms of the initial data 
of the problem which are the initial form of equilibrium for the shell r,, (s)and the load- 
ing ; this means that it is necessary to specify the conditions (even if only partial ones) 
ofthe existence of a solution which would satisfy (1.1). 

This advice of the Editor could not, unfortunately, be followed because of the prema- 
ture death of the author. 

The Editor publishes now the paper in its original version and expects that the col- 
leagues of A. M. Slobodkin will fill the gap as a contribution to the memory of their 
fellow. 

The abstract of this paper has been slightly modified. 
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variation of its area; 

1. The membrane 
reduced to tension T 

A. ht. 3lobodkin 

this obviously yields the law of deformation of the shell. 

is a two-dimensional continuum the internal forces in which are 

directed along the tangential normal to the line of section. Let 
1~ = R (xl, x8, t) be the radius vector of a material particle (x1, 2’) at the instant t , 
let p be the current mass density, and q be the vector of external loading on a unit area, 
We consider the motion of an infinitely small element of the membrane, delineated by 

the material coordinate lines II, z1 + dz’, x2, .$ + dx”, we obtain 

Here R’ is the basis conjugate to the basis R c( z aRi&t? and R is the determinant of 
the metric tensor RUB zz R;RBof the current configuration of the membrane. Here and 
in our further analysis, the summation is carried out with respect to the repeated Greek 

indices from 1 to 2. 

I,et 7 be the determinant of the metric tensor of the membrane in its natural state 
( T - 0). Setting k -= (R / T.)“~ (1.2) 

we have pk = p,,, where p0 is the mass density of the membrane in its natural state. 

Moreover, we shall consider the membrane to be elastic which means that there exists 

a function w (k) , expressi@ the density of deformation energy per unit area of the un- 
deformed membrane, and this function is such that 

T = 10’ (k), Lu’ (1) = 0, 10 (1) = 0 (1.3) 
It is here assumed that 

10” (k) ) 0, (0 < k < = ) (l.,<j 

With this notation, the equations of motion of the membrane can be written as follows: 

a”R 
fJo ata 

1 8 I/&u?‘(k) R” 
__ = (I, I- - 

I/r 839 (9, = kq) (1.:) 

2. Let us now assume that in its natural state the membrane has the shape of a surface 
of revolution the meridian of which is 

r = xi + yj = r0 (s) = 50 (s) i + yo (s) j (2.1 <s B S’L) (11.1) 

where s is the length of the arc of this curve, and 

YO (s) > 0. s1 < s < 32 (a.?) 

We shall also consider that the effective loading IJ* is axisymmetric. Under these con- 
ditions the equations of axisymmetric motion of the membrane r =- z (s, t) i + y (s, t) j 

become 

We shall assume that 
s,=-$_p?l 

yo 4 (Xi) 

where 6 is the operator of clockwise rotation by 90” in Lile plaue zh . 
Condition (2.5) means that the membrane is under the influence of a conservative 

loading having potential q (r) , and of a constant pressure with intensity p. 
Finally, let us assume that the membrane is fixed along its delineating parallel lines 
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r* (sl, t) = ri, r* (~2, t) = rz (t 20) (Z.6) 

where 
Yl > 0% ?J2 > 0 ('L.7) 

Let us now assume that the boundary value problem (2.3)-(2.6) is capable of a time- 
independent solution 

r (s, t) = r” (s) E c, fsr d s < s2) (LH) 

Theorem. If for any value of s, s1 < s < s, we have 

y0 (s) dr” 
K” (8) = ye - ds >g I I (2.9) 

then the positiveness of the second variation of the functional (*) 

in the equi~brium position (2.8) ensures stability of this position in the following two 
systems of the perturbation measures Cl]: 

Proof. As the space domain of states 2 of problem (2.3)-(2.6) we take the pro- 
duct A X Y of two sets; the first set X is formed of all possible piecewise-smooth 
vector functions r = r (s) (s* < s < ~2) such that I* (sr) = rlr (s2) == r2, and the second 

set 1’ consists. of all possible piecewise-continuous (**) vector functions v = v (s) 
(s1 d s < sz). 

We shall investigate the stability of equilibrium over the totality of all possible dis- 
contiriuous solutions of problem (2.3)-(2.6), i.e. over the totality of all conventional 

solutions, the first derivatives of which may - for a fixed t - contain discontinuities of 
the first kind at a finite number of points in the section s,s,. 

For every solution of this type r ( S, t) at an arbitrary instant t, 0 < t < CO 

(r (s,t), arlat} E 2 

In particular, the equilibrium (2.8) is represented in Z by a fixed point 

Gr” (4, O? 

Let us consider the following functional (determined for any z E 2) : 

Mf [zf = T [VI + d u [I-] = T -/- u _ LT, 

T [VI = f 5 Po?/oVZ Cl.9 
91 

(2.12) 

(2.13) 

*) Angular brackets denote pseudo-scalar multiplication of two plane vectors. 
**) i. e. having no more than a finite number of points of discontinuity of the first kind. 



llere, function c: is defined by (2. lo), and c’,, is the value of I. at r I“’ (s). i;unctional 

111 (increament in the total energy of the system) remains constant along the path of 

motion. Further, since f111 I,] is positive, functional (2.13) admits an infinitely small 

upper limit with respect to measure 11~ in accordance with (2.11). and is positive definite 

with respect to this measure. AIoreover, the motion in 1’ generated by the motion in X. 

is continuous in ttl. Finally, functional 1 L’ admits an infinitely small upper limit with 

respect to pL. Thus, to prove the theorem it is sufficient to show (*) that its premises 

imply the positive definiteness of functional A C’ iu f):< according to (2.11). 

Let us note that equilibriun1 (2. H) is an extremal of functional (‘. Further, 

klere the double dots symbolize tensor multiplication. Ifence, equilibrium (2. 8) is a 

nonsingular extremal of 1’ hecause of (1.3), (1.4), and (2. Y). 

Finally, in this case the function of Weierstrass is as follows: 

Because of (2. 9) (1.. 3) and (1.4), it is possible to find in space (-. r. r>) a vicinity 

of the curve dr a 
1’ -: ri’ (,\I, r =.x(r) S (s, ‘s -- 52) (;i.lG) 

in whit! for arbitrary (.s, r, rb) in this vicinity and for any 11, 

B (s, r, p.s. It,) * ‘In @f (K) ii’ (k) -- (K -- /ij i/” (k)} .a 0 

Hence, since extremal (2. 8) is nonsin;-ilIar, it follows p] that there exists such a vici- 

nity of curve (2.16) in spacc(,, .r, rS), illat for any s, r, rs in this vicinity and any II, # r,_ 

/:‘(s, r, r,. Its) > 0 
V) 

Thus, the condition that tile second variation of LJ Ix positive is equivalent to the 

absence on the extrenlal 
I f’ (s), ,x1 :< s :,c ,s,, (“.1S) 

of points conjugate to its ends. Thus, using the nrethod of Kneser and IIahn 13, 41 we 

can prove that .A C/ is positive-definite with respect to II:, . 
Indeed, extremal (2.18) can be expanded over section sr’ <S 6 s?‘, st’ < st. ,+’ > sL’ 

in such a manner that tile expanded extremal 
1’ I’- (,s )T s,’ :_ s __ SJ ’ (2.111) 

preserves all the characteristics of extremal(2.13). 

If sufficiently thin bundles of extrernals, including arc (2.19). are drawn through the 

left- and right-hand ends of this arc, then each of tt ,<se bundles will form in the section 

I_- ---.--- ~____ ___ --... .-._ _-. -I_ 

*) It is obviolls that the motion in .r --in accordance with (2.11)-k continuous with 

respect to tl:r. 
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si’ < s < sz’ a central area in which condition (2.17) is fulfilled. 
It is convenient to introduce at this stage the following notation: the left-hand ends 

of arcs (2.18). (2.19) will be called points A, A', and the right-hand ends will be called 

poinrs B, B' , respectively. The value of the integral 

on r (s) E X will be called U,,, and on the arc of extremal(2.20) - U,, *, on the 
are of the extremal of the left-hand bundle, contained between point A’ and some point 

p, will be called LiApp* , and on the arc of the extremal of the right-hand bundle, con- 

tained between P and B’, will be U,,. * , respectively. 
Let now F be an arbitrary positive number such that closed cylinder H 

{jr - r0 @)_I =- e (Si < s < ss)} 

is completely contained in the intersection of the above described central areas. We 
shall prove that for any r (s) E X, for which 11~ =- E,wehave AU>P>O, where 

P = P (t‘) is independent of the chosen value of r (8). 

Indeed, if & 1r (s)f I= E, the curve r (s) (sl < s < s2) is completely contained inside 
cylinder K and has at least one common point P with it. Then, whatever is p E fi , 

However, li,,, + Upi’ is a continuous function of point P e R. Hence, since I-f is 
limited and closed in space (r, s), there must exist a point M E R such that 

Thus, 

which was to be proved. 
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